If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n=48
We move all terms to the left:
n^2+n-(48)=0
a = 1; b = 1; c = -48;
Δ = b2-4ac
Δ = 12-4·1·(-48)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{193}}{2*1}=\frac{-1-\sqrt{193}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{193}}{2*1}=\frac{-1+\sqrt{193}}{2} $
| 3/4x=22-2x | | 5=4x=17 | | 2x²-7x=-4 | | 4x+2(10x+8)=20 | | 1/3×-1=1/4x+2 | | 5+4a=81 | | x⁴-8x+63=0 | | 7x+3+3+2x=75 | | 3n^2+7n-306=0 | | Σm(0,1,4,5,7)=∏M(2,3,5,6) | | 3.a= | | 3x-4=5x^2 | | 24-10x=-36 | | 7-x3=29 | | 6k+2=10 | | 4x-(2x-1)=15x-4 | | 9x-8=8x-2;x=4* | | 3+2e=-6 | | 3x+25=38-15 | | 17x+15=38x-15 | | v=11=-2 | | 8m-6=74 | | x–17=43 | | 28x+4=10x-8 | | F(2)=2x^2-10 | | 5x2-25x+10=0 | | 2x-12=4-16 | | 11x+7=23x-8 | | 5x-25x+10=0 | | 2x-12=4=16 | | X/2=-1x | | x/2=10 |